

ALISSON HISAO KOBORI

WELLINGTON BIING JUNG LEE

PROJETO E IMPLEMENTAÇÃO DE UMA APLICAÇÃO PARA

ANÚNCIO DE PARADAS EM LINHAS DE ÔNIBUS

Monografia apresentada à Escola

Politécnica da Universidade de São Paulo

para a conclusão de curso.

Curso de Graduação:

Engenharia Mecatrônica

Orientador:

Prof. Dr. Fabrício Junqueira

São Paulo

2016

ii

ALISSON HISAO KOBORI

WELLINGTON BIING JUNG LEE

PROJETO E IMPLEMENTAÇÃO DE UMA APLICAÇÃO PARA

ANÚNCIO DE PARADAS EM LINHAS DE ÔNIBUS

Monografia apresentada à Escola

Politécnica da Universidade de São Paulo

para a conclusão de curso.

Curso de Graduação:

Engenharia Mecatrônica

Orientador:

Prof. Dr. Fabrício Junqueira

São Paulo

2016

iii

 Catalogação-na-publicação

Kobori, Alisson Hisao; Lee, Wellington Biing Jung
 Projeto e implementação de uma aplicação para anúncio
de paradas em linhas de ônibus / A.H. Kobori; W.B.J. Lee –
São Paulo, 2016

46 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de São Paulo. Departamento de Engenharia Mecatrônica e de
Sistemas Mecânicos.

1.Sistema RTPI 2.GPS 3.Internet of Things
I.Universidade de São Paulo. Escola Politécnica. Departamento
de Engenharia Mecatrônica e de Sistemas Mecânicos II.t.

iv

AGRADECIMENTOS

Ao nosso orientador Prof. Dr. Fabrício Junqueira pela sua constante

orientação, paciência durante o período da realização do trabalho e pela ajuda

nos momentos difíceis.

Aos professores da Escola Politécnica da USP, por terem nos passado

seu conhecimento e nos ensinado a enfrentar desafios.

A todos aqueles que contribuíram direta ou indiretamente na produção

deste trabalho.

v

RESUMO

 Devido à falta de informações dentro dos ônibus sobre as linhas

percorridas, muitos usuários têm dificuldade em saber a localização exata do

veículo e ficam em dúvida em relação à qual parada desembarcar, criando uma

dificuldade no planejamento de sua viagem. O objetivo deste trabalho é projetar

e implementar um sistema que informe aos usuários de um ônibus as próximas

paradas e o tempo de viagem estimado até elas. Para tanto, o sistema é

controlado por um hardware baseado em microcontrolador, capaz de coletar

dados via GPS, cadastrar informações da linha de ônibus e realizar anúncios

através de um monitor de LCD e um alto-falante. Além disso, desenvolveu-se um

software capaz de processar os dados recebidos, realizar cálculos para informar

a localização das próximas paradas e estimar o tempo de viagem. A

configuração, início e finalização do sistema são realizados por um operador que

é responsável por inserir os dados da linha percorrida pelo ônibus. O sistema

executa a maior parte das ações e possui a função de passar as informações ao

usuário de maneira visual e sonora. A arquitetura é baseada em Internet of

Things na qual a interconexão hardware-software é feita via Internet, ou seja, os

dados e algoritmos desenvolvidos no software são transferidos ao

microcontrolador pela rede.

vi

Sumário

1. Introdução ... 1

1.1. Objetivos do trabalho ... 3

1.2. Metodologia Utilizada..4

2. Revisão Bibliográfica ... 5

2.1. A plataforma Arduino.. 5

2.2. A plataforma Raspberry Pi ... 7

2.3. Estrutura do hardware .. 8

2.3.1. Sistema de anúncio de paradas de maneira sonora e visual 8

2.3.2. Coleta de dados por GPS ... 8

2.3.3. Armazenamento do itinerário e das mensagens aos usuários 9

2.4. Projeto do software .. 10

2.4.1. Cálculo da posição e estimativa de tempo até a próxima parada 10

2.4.2. Gerenciamento de mensagens no monitor e no alto-falante.................. 10

2.5. Escolha do hardware: Arduino x Raspberry Pi ... 11

2.6. Algoritmo de GPS: cálculo da distância e do tempo de viagem 11

3. Descrição do Sistema Proposto...16

3.1. Diagrama de Casos de Uso ... 16

3.2. Diagrama de Atividades ... 18

3.2.1. Gerenciar operação... 18

3.2.2. Selecionar itinerário... 19

3.3. Diagrama de Classes ... 20

3.3.1. Mensagem...21

3.3.2. Itinerário...21

3.3.3. Modulo_GPS...22

3.3.4. Monitor_LCD..22

3.3.5. Alto_falante...22

3.3.6. Microcontrolador..23

3.4. Diagrama de Sequência ... 23

4. Teste do Sistema de Aquisição de Dados via GPS 26

vii

4.1. Instalação do Módulo GPS no Arduino ... 26

4.2. Teste do Sistema de Aquisição via GPS .. 27

5. Implementação do Sistema .. 29

5.1. Aspectos Gerais..29

5.2. Configuração e Implementação da plataforma..30

5.2.1. Montagem do Sistema..30

5.2.2. Implementação da Interface Gráfica..32

5.2.3. Implementação do Algoritmo de Cálculo das Próximas Paradas e Tempo

Estimado..34

6. Conclusões ... 37

7. Referências Bibliográficas .. 38

1. Introdução
 O ônibus é uma modalidade muito utilizada que possibilita o transporte de

uma quantidade elevada de passageiros em um único veículo. Com a política de

criação de faixas de ônibus adotada pela Prefeitura de São Paulo no ano de

2013, o número de passageiros que utilizam esse meio de transporte vem

aumentando (DO VALLE, 2014). De acordo com os dados da Prefeitura de São

Paulo, em março de 2015 foi computada uma média 9,6 milhões de passageiros

transportados diariamente por este meio de transporte. A partir desses dados,

pode-se afirmar que o sistema de transporte público por ônibus é essencial para

a locomoção de pessoas em São Paulo. Entretanto, é frequente os passageiros

não saberem sua localização devido à falta de informações da linha de ônibus

no decorrer do trajeto. Com isso, necessitam perguntar ao cobrador a parada de

destino ou acabam se perdendo no meio do caminho.

 Esse problema pode ser minimizado por meio do desenvolvimento de um

sistema de informação em tempo real para passageiros (RTPI system) no interior

dos ônibus, podendo alertar os usuários, de maneira visual e sonora, as

próximas paradas bem como o tempo estimado até elas.

Ao providenciar um amplo espectro de informações, os sistemas RTPI já

mostraram causar efeitos positivos nos passageiros, tais como a redução no

tempo de espera, fatores psicológicos positivos (como a redução da incerteza,

facilidade de planejamento e sentimento de segurança), disposição para pagar

pelo transporte público e maior satisfação dos usuários. Além disso, oferecem

melhorias significativas para o sistema de transporte em geral, uma vez que

influenciam as pessoas para o uso de meios de transporte públicos – o que reduz

o número de carros nas ruas, diminuindo, assim, os congestionamentos

(DZIEKAN e KOTTENHOFF, 2006; POLITIS, PAPAIOANNOU, BASBAS e

DIMITRIADIS, 2010).

 Na cidade de Kyoto (Japão) os ônibus da cidade possuem um sistema

RTPI deste tipo. Em monitores localizados em lugares estratégicos do veículo

(Figura 1) sinaliza-se para o passageiro informações como: os próximos 4 pontos

de parada, se o ônibus irá parar no próximo ponto ou não e o preço das

passagens. Além disso, por meio sonoro, o motorista é capaz de avisar sobre o

próximo ponto de parada bem como possíveis atrasos devido às interferências

no trajeto.

2

Figura 1 – Sistema de avisos dos ônibus de Kyoto.

 No Brasil, há um projeto deste tipo na cidade de São Paulo. A prefeitura

de São Paulo já está testando, por meio de um projeto da SPTrans, a

implementação de novas tecnologias nos ônibus da cidade. Entre essas novas

tecnologias estão inclusas: alto-falantes internos e externos, que avisam os

passageiros sobre as próximas paradas; um painel eletrônico, que informa o

itinerário para facilitar o desembarque do passageiro e sistema de GPS, que

permite saber a localização instantânea do veículo e até informar os usuários em

painéis nos pontos de ônibus (Figura 2) (SECRETARIA EXECUTIVA DE

COMUNICAÇÃO, 2013).

3

Figura 2 – Painel eletrônico informando o itinerário aos passageiros. (SECRETARIA

EXECUTIVA DE COMUNICAÇÃO, 2013).

 1.1. Objetivos do trabalho
 Neste sentido, o objetivo deste trabalho é projetar e implementar uma

solução de hardware e software para ser utilizado no interior de um ônibus,

visando alertar os usuários sobre as próximas paradas (nome da parada e

estimativa de tempo de chegada). Para fins de validação, pretende-se cadastrar

(nome e coordenadas) as paradas de ônibus percorridas por uma linha circular

da USP. Caso não seja possível testar o projeto em um dos circulares, o intuito

é realizar o mesmo trajeto de carro, registrando o percurso e as informações

fornecidas pelo aplicativo/sistema.

 Para alcançar o objetivo, as metas que precisam ser atingidas ao longo

do projeto foram:

● Disponibilizar um sistema que informe aos usuários de um ônibus as

próximas paradas e o tempo de viagem estimado.

● Desenvolver uma plataforma controlado pelo hardware Raspberry Pi,

capaz de coletar dados via GPS, cadastrar informações da linha de ônibus

e realizar anúncios por meio de um monitor LCD e um alto-falante.

4

● Desenvolver um software que será implementado na plataforma, capaz

de processar os dados recebidos via GPS, realizar cálculos para informar

a localização das próximas paradas e estimar o tempo de viagem.

 1.2. Metodologia Utilizada

 O projeto visa o desenvolvimento de um sistema para a execução de

tarefas de modo inteligente, e para tornar isso possível é necessário auxilio de

hardware e software para gerenciar as funcionalidades presentes. Para obter um

embasamento teórico, foi realizada uma revisão bibliográfica de soluções

existentes, possíveis hardwares a serem utilizados, as diferentes aplicações

incluídas e algoritmos de cálculo a partir de dados obtidos via GPS.

 Antes de iniciar a implementação do projeto de fato, foi preciso verificar a

diversas funcionalidades envolvidas. Para ajudar nesse processo de

documentação, foi utilizado diagramas UML. Com isso, a implementação do

software é facilitada e feita de maneira ordenada.

 Com base nos diagramas UML projetados, o sistema será implementado

e testado na próxima etapa do projeto.

5

 2. Revisão Bibliográfica
 O projeto consiste em uma estrutura de hardware e software. Para o

desenvolvimento, foram considerados duas possíveis soluções de hardware: o

Arduino e o Raspberry Pi. Cada um possui prós e contras que precisam ser

levados em consideração no desenvolvimento do projeto. Além disso, é

necessário também fazer a aquisição dos dados por GPS e realizar cálculos para

obter a localização e o tempo de viagem. Sendo assim, foi feito uma revisão

bibliográfica e estudo dos tópicos citados, de maneira a proporcionar o melhor

resultado ao projeto e atingir as metas estabelecidas.

 2.1. A plataforma Arduino
 De acordo com BADAMASI (2014), o Arduino é uma plataforma de

prototipagem eletrônica, baseado em hardware e software de fácil utilização. O

modelo mais simples é o Arduino Uno R3 e seu hardware é composto pelos

seguintes componentes:

● Entrada USB: usado para fazer o upload do programa ao

microcontrolador e alimentar a placa.

● Fonte de alimentação externa: usado para alimentar a placa e cuja

tensão pode ser regulada de 9 a 12 V.

● Botão de reset: reseta o Arduino para executar outro comando caso

tenha sido feito o upload.

● Microcontrolador: recebe e envia as informações de comando ao circuito

utilizado.

● Pinos analógicos: pinos de entrada analógica, de A0 a A5.

● Pinos I/O digitais: pinos de entrada e saída digital, de 2 a 13.

 O software é composto pelo IDE (Integrated Development Enviroment) e

é dividido em 3 partes principais:

● Área de comando: composto por um menu de itens como File, Edit,

Sketch, Tools, Help e ícones de verificação e upload do programa.

● Área de texto: local para escrever o programa.

● Janela de mensagem: mostra mensagens do IDE relacionadas à

verificação do código.

 O Arduino Uno R3 possui uma capacidade analógica diversificada,

possibilitando a utilização em conjunto com praticamente todos os tipos de

componentes, sensores e atuadores. A linguagem de programação utilizada é

baseada em C e é de fácil implementação por não estar vinculado a nenhum

sistema operacional (ORSINI, 2015).

6

 A placa básica é composta por um controlador Atmel AVR de 8 bits

(algumas versões chegam a 32 bits), conexões digitais e analógicas e entrada

USB para ligação simples e direta a computadores. A plataforma suporta e

transmite uma corrente elétrica de até 40 mA. A placa possui memória RAM de

2 KB e consome 175 mW (SOUSA, 2015).

Devido à existência de diversos modelos de Arduino, foi feita uma análise

mais detalhada dessas placas.

Tabela 1 – Comparação entre os diferentes modelos de Arduino (FILIPEFLOP, 2014)

 Pela análise da Tabela 1, percebe-se que a principal diferença entre os

modelos de Arduino é o número de portas digitais, PWM e analógicas. A

memória varia de 16 a 512 kbytes dependendo do microcontrolador utilizado.

Apesar de o Arduino Due possuir a placa com a maior capacidade de

processamento, suas portas operam à 3,3 V, o que compromete a utilização de

alguns shields disponíveis no mercado que trabalham a 5 V. Com exceção ao

Arduino Pro Mini, todas as outras placas possuem a mesma capacidade de

processamento de 16 MHz (FILIPEFLOP, 2014). Sendo assim, a escolha da

placa utilizada dependerá basicamente do número de portas e da memória

necessárias.

7

 2.2. A plataforma Raspberry Pi
 Segundo RICHARDSON e WALLACE (2013), o Raspberry Pi é um

hardware de desenvolvimento parecido com os componentes internos de um

celular, com diversos conectores acessíveis a várias portas e funções. Seus

principais componentes são:

● Processador: baseado em sistema de um chip de 700 MHz e 32 bits,

construído sobre a arquitetura ARM11.

● Slot para cartão de memória: não há disco rígido, todo o conteúdo é

armazenado em um cartão de memória SD.

● Porta USB: a placa original suportava 100 mA de corrente, mas nas

versões mais recentes, é possível suportar as especificações completas

das portas USB 2.0.

● Porta Ethernet: dependendo do modelo pode possuir padrão RJ45 ou

adaptador de rede USB.

● Conector HDMI: oferece saída de áudio e vídeo digital.

● LEDs de status: são 5 LEDs que indicam diferentes situações na placa.

● Saída de áudio analógico: conector de áudio analógico padrão, mas que

possui qualidade inferior ao HDMI.

● Saída de vídeo composto: conector padrão do tipo RCA e com resolução

extremamente baixa quando comparada com o HDMI.

● Entrada de energia: alimentado por um conector micro USB.

 O Raspberry Pi não é tão flexível na leitura de sensores analógicos,

muitas vezes, necessitando da assistência de um hardware extra. O seu

funcionamento pode ser vinculado ao sistema operacional Linux e com a

programação feita em Python. Recentemente, surgiu a possibilidade de instalar

o Windows 10 IoT, uma versão de Windows 10 otimizado para plataformas

menores como o Raspberry Pi. Essa ferramenta utiliza a Plataforma Universal

Windows (UWP), facilitando o desenvolvimento de aplicações que possibilitam

integrar interface com o usuário, pesquisa, armazenamento online e serviços

baseado em nuvem (MICROSOFT, 2016). Comparando com o Arduino, a

capacidade de processamento de dados é 40 vezes mais rápido, levando em

consideração a velocidade do Clock. Além disso, o Raspberry Pi possui uma

memória RAM 128000 vezes maior. Outro benefício é a capacidade de integrar

diversas funções como internet, vídeo e processamento de áudio em uma única

placa (ORSINI, 2015).

8

 2.3. Estrutura do hardware
 Para a estrutura do hardware, alguns requisitos devem ser atendidos. O

anúncio das próximas paradas será feito de forma sonora através de um alto-

falante e, de forma visual, através de um monitor. A aquisição das coordenadas

é feita por um receptor GPS. O itinerário com o percurso do ônibus precisa ser

armazenado para que os dados sejam processados durante a implementação

do software. Devido à necessidade de obter resultados instantâneos, a

plataforma precisa ser capaz de processar uma grande quantidade de dados.

 2.3.1. Sistema de anúncio de paradas de maneira sonora e visual
 Segundo o LABORATÓRIO DE GARAGEM (2013), existem diversas

maneiras de conectar um alto-falante ao Arduino e elas dependem do formato

do áudio utilizado. Para um áudio em formato MP3 é possível utilizar um MP3

Player Shield da Sparkfun que já possui um espaço para inserir um cartão SD e

uma saída de áudio para conectar uma caixa de som.

 Para gerar um anúncio de maneira visual, é preciso conectar o hardware

utilizado com um monitor LCD. Os dois tipos de saídas mais comuns e que estão

presentes em televisões, monitores e notebooks são o VGA e o HDMI. O Arduino

não possui nenhuma dessas saídas, por isso, para obter uma conexão VGA, por

exemplo, é necessário conectar módulos que ofereçam suporte à placa. Um

desses módulos é o MicroVGA que auxiliado por bibliotecas e códigos, conecta-

se ao Arduino através de portas digitais, proporcionando uma saída VGA e

possibilitando mostrar interfaces com cores e textos em um monitor com esse

tipo de entrada (MICROVGA, 2012).

 O Raspberry Pi já possui saídas de áudio analógico padrão de 3,5 mm

destinado a conduzir cargas de alta impedância. Mesmo assim, conectar com

fones de ouvido ou alto-falantes sem alimentação não proporciona sons de

qualidade. A melhor opção seria usar saída HDMI que além de fornecer uma

qualidade sonora melhor, também possibilita a conexão com um monitor

(RICHARDSON & WALLACE, 2013) que será utilizado no anúncio de paradas

visualmente.

 2.3.2. Coleta de dados por GPS
 Atualmente, a utilização do GPS para rastreamento de veículos já está

bastante difundida. Essa ferramenta pode proporcionar diversas aplicações

como geolocalização, estimativa do tempo de percurso e análise do trânsito nos

trechos das estradas. Com essa tecnologia é possível desenvolver aplicações

para auxiliar na viagem das pessoas por meios de transporte e ajudar a monitorar

9

o trânsito nos grandes centros urbanos (MEZA, LIZÁRRAGA e LA FUENTE,

2013).

 Para que o projeto atenda as metas especificadas, é necessário utilizar

um recurso de coleta de dados por GPS e, a partir disso, calcular os parâmetros

que indicam se o ônibus chegou na próxima parada e estimar o tempo de viagem

até ela.

 Existem módulos de GPS que podem ser encaixados no Arduino e no

Raspberry Pi para promover a aquisição de dados via GPS. Um exemplo é o

shield de GPS para o Arduino da Sparkfun, que possui diversas características

que tornam fácil o seu uso. Esse shield possui 2 soquetes de 8 pinos e 2 de 6

pinos que precisam ser inicialmente soldadas à placa, e um módulo de GPS EM-

506 que precisa ser encaixado à placa. Após isso, o shield já pode ser encaixado

diretamente ao Arduino. Possui um botão liga/desliga que controla a energia

fornecida ao módulo e um botão de reset (CAVIS, 2015).

 Para o Raspberry Pi, existe um módulo de GPS da Adafruit que possui

uma função semelhante ao shield visto anteriormente. Nesse caso, é necessário

adquirir um cabo conversor de TTL para USB, possibilitando o encaixe no

Raspberry Pi (TOWNSEND, 2013).

 2.3.3. Armazenamento do itinerário e das mensagens aos usuários
 O Raspberry Pi já possui um slot para armazenamento de dados em um

cartão SD e por não possuir um disco rígido, todas as informações serão

armazenadas nesse cartão. Outra maneira seria conectar um pen drive ou um

HD externo contendo as informações necessárias ao projeto (RICHARDSON &

WALLACE, 2013). Sendo assim, não é preciso a utilização de módulos ou

shields no armazenamento de dados, tornando o Raspberry Pi bem vantajoso.

 O Arduino já possui uma memória EEPROM interna e seu tamanho varia

conforme o tipo do microcontrolador instalado, podendo variar de 1024 a 4096

bytes (WIECHERT, 2012). Entretanto, o projeto requer uma quantidade de dados

muito maior e, por essa razão, esse método não poderia ser utilizado. Mesmo

assim, é possível armazenar dados no Arduino em um cartão SD. Para isso, é

preciso utilizar um módulo para cartão SD, necessitando que a comunicação seja

feita com base no protocolo SPI (Serial Peripheral Interface), que consiste em

uma comunicação serial síncrona de dados entre um master (mestre) e

um slave (escravo), que neste caso são respectivamente, o Arduino e o shield

para o cartão SD. Com o auxílio de uma biblioteca SD e a criação de um arquivo

em formato “.txt”, pode-se armazenar dados e realizar a leitura deles com o

Arduino (VELEDAF, 2014).

10

 2.4. Projeto do software
 Para a projeto do software é necessário desenvolver uma programação

capaz de utilizar os dados obtidos pelo GPS e, a partir deles, determinar a

localização do ônibus, calcular a distância até a próxima parada e estimar o

tempo de viagem. Essas informações precisam ser constantemente atualizadas

e informadas de maneira correta aos usuários. Para tornar essa tarefa possível,

as ações a serem executadas pelo hardware serão descritas através de casos

de uso, facilitando o desenvolvimento do software.

 2.4.1. Cálculo da posição e estimativa de tempo até a próxima
parada
 A aquisição dos dados via GPS através de módulos ou shields já foi

descrita na seção 2.3.2. Essa aquisição das coordenadas de latitude e longitude,

além da data e horário, é feita de modo instantâneo.

 Para o shield de GPS da Sparkfun aplicado ao Arduino, a biblioteca

TinyGPSPlus desenvolvida para Arduino e o código da programação podem ser

encontrados no site da própria empresa. Ao ser implementado no Arduino, o

módulo fornece as coordenadas da latitude e longitude, data e horário em tempo

real, na janela de mensagem da IDE do Arduino (CALVIS, 2015).

 Para o Raspberry Pi, após conectar o módulo GPS através de uma

entrada USB, é necessário configurar o adaptador USB e instalar o GPS

Daemon, um pacote de software que pode ser baixado através de comandos

aplicados no próprio Raspberry Pi e que auxilia a comunicação entre o módulo

de GPS e o Raspberry Pi. Aplicando mais alguns comandos, é mostrado na tela

de saída a data, o horário, a latitude e a longitude em tempo real (TOWNSEND,

2013).

 As coordenadas de latitude e longitude são utilizadas no cálculo da

posição atual do ônibus e a distância até a próxima parada. A data e o horário

são úteis ao cálculo do tempo estimado até a próxima parada.

 2.4.2. Gerenciamento de mensagens no monitor e no alto-falante
 Para poder gerenciar as informações fornecidas ao usuário através de

mensagens visuais no monitor ou sonoras no alto-falante é necessário,

primeiramente, armazenar essas informações no hardware, como foi visto na

seção 2.3.3.

11

 Na seção 2.3.1, foi descrito a utilização de um MP3 Player Shield para

Arduino capaz de tocar áudios em formato MP3. Esses áudios são armazenados

previamente e o software precisa ser capaz de sincronizar o instante do anúncio

sonoro com chegada à parada de destino. Para implementar o sistema é

necessário instalar as bibliotecas SFEMP3 Shield e SdFat que auxiliam a

comunicação do shield ao Arduino, e desenvolver um código que execute as

tarefas desejadas (LABORATÓRIO DE GARAGEM, 2013). Com relação às

mensagens mostradas no monitor, o software precisa ser capaz de analisar a

localização do ônibus e mostrar no monitor a parada seguinte, de acordo com o

itinerário que está armazenado no hardware.

 No Raspberry Pi, a lógica utilizada no software é semelhante, entretanto,

não será necessário a utilização de módulos ou shields para auxiliar o trabalho

do hardware.

 2.5. Escolha do hardware: Arduino x Raspberry Pi
 Através das análises de hardware e software, percebe-se que para

implementar o projeto no Arduino é necessário a utilização de módulos ou shields

para diferentes funcionalidades como: anúncio de paradas em um monitor ou

alto-falante, coleta de dados do GPS e armazenamento de itinerários e

mensagens. No Raspberry Pi, o único módulo utilizado foi na aquisição de dados

pelo GPS.

 A comparação de modelos mais simples de Arduino com o Raspberry Pi

pode ser injusta devido ao fato dessas placas não possuírem uma capacidade

de processamento elevado ou presença de entradas que desempenhem funções

variadas. A versão mais potente do Arduino levando em consideração a

capacidade de processamento é o Galileo, que possui um processador Intel de

400 MHz e 32 bits (ainda inferior ao Raspberry Pi), e entrada para cartão micro

SD (ARDUINO, 2014). Mesmo assim, ainda não existem saídas para áudio ou

monitor, o que traz novamente a necessidade de utilizar shields capazes de

exercer essas atividades.

 A maior capacidade de processamento e a possibilidade de dispensar o

uso de diversos shields tornam o Raspberry Pi um hardware mais prático e

vantajoso que o Arduino para o desenvolvimento do projeto proposto.

 2.6. Algoritmo de GPS: cálculo da distância e do tempo de viagem
 Segundo MEZA, LIZÁRRAGA e LA FUENTE (2013) é possível estimar a

distância e o tempo de viagem a partir dos dados coletados com o GPS. A

metodologia utilizada para alcançar este propósito possui duas análises

diferentes. A primeira consiste na análise dos sinais obtidos por GPS que

12

fornecerá as estatísticas das rotas. Obtidas essas informações, será realizada

uma análise dos segmentos de rua. Essa metodologia pode ser observada no

diagrama de atividades da Figura 3.

Figura 3 – Metodologia utilizada no cálculo da distância e do tempo de viagem a partir dos

dados do GPS (MEZA, LIZÁRRAGA e LA FUENTE, 2013).

A sequência de ações dessa metodologia é:

1. Importar os dados obtidos por GPS: data, horário, latitude e longitude

em tempo real.

2. Calcular a distância terrestre entre 2 coordenadas consecutivas.

 Para isso é necessário calcular a distância entre 2 latitudes e 2

longitudes consecutivas. A partir de uma visão geométrica, cada uma

dessas distâncias corresponde aos catetos de um triângulo retângulo e a

hipotenusa corresponde à distância terrestre. O equacionamento fica:

𝐴 = 69,1 ∗ (𝑙𝑎𝑡2− 𝑙𝑎𝑡1)

13

𝐵 = 69,1 ∗ (𝑙𝑜𝑛2− 𝑙𝑜𝑛1) ∗ 𝑐𝑜𝑠⁡(l𝑎𝑡)

𝑑 = √𝐴2 + 𝐵2 ∗ 1609,334

 Onde 𝐴 e 𝐵 são os catetos, 𝑙𝑎𝑡2 e 𝑙𝑎𝑡1 são as coordenadas da latitude, 𝑙𝑜𝑛2

e 𝑙𝑜𝑛1 são as coordenadas da longitude. As constantes 69,1 e 57,3 servem para

converter as coordenadas da latitude e longitude em graus para distância terrestre

em milhas. A distância terrestre 𝑑 é convertida para metros multiplicando por

1609,334.

3. Calcular o tempo de viagem instantâneo entre 2 coordenadas

consecutivas dado por:

𝑡 = (𝑐𝑡2− 𝑐𝑡1) ∗ 86400

 Onde 𝑡 é o tempo de viagem em segundos entre as duas coordenadas de GPS,

com 𝑐𝑡2 e 𝑐𝑡1 sendo o tempo registrado em cada coordenada. Como esse tempo

é dado em horas, multiplica-se por 86400 para convertê-lo em segundos.

4. Calcular a velocidade instantânea entre 2 coordenadas consecutivas,

dado por:

𝑣 =
𝑑

𝑡
∗ 3,6

 Onde 𝑣 é a velocidade instantânea em km/h, 𝑑 é a distância em metros e 𝑡 é

o tempo em segundos. Para converter de m/s para 𝑘𝑚/ℎ, multiplica-se por 3,6.

5. Limpar dados do GPS devido à erros de medição que podem ocorrer

em áreas urbanas nas quais a cobertura dos sinais de satélites são

enfraquecidas por prédios, túneis, condições climáticas, entre outros.

6. Segmentar as ruas em trechos obtidos por cada aquisição de dados

do GPS ou trechos de comprimento constante, como por exemplo, 500

m ou 1 km.

7. Calcular o comprimento do segmento dado por:

𝐿 = ∑𝑑

𝑛

𝑖=1

 Onde 𝑛 é o número de trechos e 𝑑 é a distância entre 2 pontos

consecutivos do GPS que formam cada trecho.

14

8. Calcular o tempo de viagem do segmento dado por:

𝑇 =∑𝑡

𝑛

𝑖=1

 Onde 𝑛 é o número de trechos e 𝑑 é o tempo entre 2 pontos

consecutivos do GPS que formam cada trecho.

9. Calcular a velocidade média do segmento dado por:

𝑉 =
𝐿

𝑇
∗ 3,6

Onde⁡𝐿 é o comprimento do segmento e 𝑇 é o tempo de viagem do

segmento. Multiplica-se o resultado por 3,6 para obter a velocidade em

𝑘𝑚/ℎ.

 Um exemplo de estudo de caso baseado nessa metodologia foi realizado

em Pequim. Os dados foram obtidos pelo Microsoft Research Group através da

análise de taxis com GPS embutido, durante um período de 8 dias. Esses dados

correspondem à um percurso de 90 minutos, das 1:30 PM às 3:00 PM. Um

pedaço da análise dos segmentos de rua encontra-se na Tabela 2.

Tabela 2 – Análise dos segmentos de rua com o comprimento do segmento, o tempo de

viagem e a velocidade média (MEZA, LIZÁRRAGA e LA FUENTE, 2013).

Seg ID Date - Time
Seg Length

(m)
Travel

Time (s)
AV Speed

(km/h)

1 01:32:34 p.m. 405 105.00 14

2 01:33:39 p.m. 427 64.00 24

3 01:36:00 p.m. 818 141.00 18

4 01:36:45 p.m. 285 45.00 23

5 01:37:50 p.m. 497 65.00 28

6 01:38:30 p.m. 439 40.00 40

7 01:39:15 p.m. 532 45.00 42

8 01:39:45 p.m. 179 30.00 21

9 01:41:50 p.m. 426 95.00 16

10 01:42:15 p.m. 34 25.00 5

11 01:43:50 p.m. 523 105.00 19

12 01:51:25 p.m. 1018 455.00 7

13 01:53:57 p.m. 475 152.00 12

14 01:56:02 p.m. 995 125.00 27

15 01:58:47 p.m. 1291 165.00 29

16 01:59:32 p.m. 462 45.00 36

15

17 01:59:52 p.m. 191 20.00 19

18 02:05:12 p.m. 1099 320.00 10

19 02:07:57 p.m. 296 165.00 7

20 02:08:47 p.m. 552 50.00 41

 Os parâmetros de um trajeto percorrido por um veículo podem ser

estimados através da análise dos segmentos intermediários e quanto menor o

segmento, maior será a precisão do cálculo. Percebe-se pela análise da tabela

2 que os parâmetros comprimento do segmento, tempo de viagem e velocidade

média são calculados sempre a partir de 2 coordenadas consecutivas do GPS.

Para obter a distância percorrida e o tempo de viagem para o trecho desejado,

deve-se somar todos os valores obtidos nos segmentos até o ponto final. Por

exemplo, do segmento 1 ao 10, a distância percorrida foi de 4042 m e o tempo

de viagem foi de 655 s.

 A partir dos resultados obtidos por esse estudo, conclui-se que é possível

estimar, a partir de alguns dados obtidos por GPS, parâmetros como distância

percorrida e tempo de viagem. Para que o método utilizado seja preciso, é

necessária a utilização de um GPS com uma taxa de aquisição de dados

adequada, diminuindo, desse modo, o intervalo de tempo entre cada aquisição.

 Entretanto, esse método não possibilita a realização de estimativas em

tempo real, já que seus cálculos são obtidos a partir de um banco de dados,

coletado através do deslocamento de veículos equipados com GPS.

16

 3. Descrição do Sistema Proposto

 Neste capítulo, é realizada a descrição do sistema de anúncio de paradas

nas linhas de ônibus. Para auxiliar na descrição do funcionamento do sistema

são utilizados diagramas UML, que mostram como é a interação do sistema com

o usuário, a sequência de eventos e a estrutura utilizada no desenvolvimento do

software. Nesse projeto, são utilizados 4 tipos de diagramas UML: diagrama de

casos de uso, diagrama de atividades, diagrama de classes e diagrama de

sequência.

 3.1. Diagrama de Casos de Uso
 Os diagramas de casos de uso são muito úteis na descrição de como o

usuário interage com o sistema e quais as funcionalidades envolvidas. Nesse

projeto, o usuário não executa nenhum caso de uso, já que a maior parte das

ações é executada pelo sistema. Há apenas a presença de um operador que é

responsável por selecionar o itinerário e iniciar/finalizar a operação da

plataforma. O diagrama de casos de uso do sistema proposto pode ser

observado na Figura 4.

Figura 4 – Diagrama de casos de uso do sistema proposto

 A seguir será realizada uma descrição detalhada dos casos de uso e

como eles estão relacionados com os demais casos de uso do sistema.

17

● Iniciar operação: O operador pode iniciar a operação do sistema. Uma

vez que o itinerário esteja selecionado, inicia-se o gerenciamento da

operação.

● Finalizar operação: De maneira análoga ao caso de uso anterior, o

operador pode finalizar a operação do sistema para realizar ajustes,

consertar erros e reconfigurar a plataforma.

● Gerenciar operação: Este caso de uso é a base de todo o funcionamento

do sistema. A plataforma será responsável pelo gerenciamento de todas

as operações presentes e deve realizar outros 4 casos de uso: ‘Obter

dados via GPS’, ‘Mostrar no monitor’, ‘Emitir sinal sonoro’ e ‘Importar

itinerário e mensagens’. Esses 4 casos de uso possuem uma relação de

inclusão com o caso de uso ‘Gerenciar operação’ e esta relação está

representada no diagrama com a palavra-chave <<include>>. Além disso,

a plataforma possui também relação de associação com os casos de uso

‘Iniciar operação’ e ‘Finalizar operação’.

● Obter dados via GPS: Para saber a localização do ônibus, calcular a

distância até a próxima parada e o tempo de viagem, é preciso realizar

uma aquisição das coordenadas via GPS. Durante esse processo, a

plataforma obtém a data, o horário, a latitude e a longitude em tempo real.

A velocidade com que esse processo é feito depende da taxa de aquisição

do GPS e isso acaba influenciando os cálculos realizados no software.

● Mostrar no monitor: Os usuários do ônibus são informados de maneira

visual por meio de um monitor LCD que contém as informações das

próximas paradas. Após passar por uma determinada parada, o monitor

atualiza e passa a mostrar as informações da próxima parada.

● Emitir sinal sonoro: Caso de uso que é responsável pela emissão das

mensagens de aviso aos usuários do ônibus, assim que este estiver

próximo da parada seguinte. Sendo assim, esse caso de uso depende do

tempo de viagem e sua ativação ocorre quando este parâmetro se

aproxima de um valor pré-determinado.

● Importar itinerário e mensagens: Caso de uso em que a plataforma

recebe o itinerário que contém as informações sobre a linha de ônibus e

as mensagens de voz que fazem o anúncio das paradas aos usuários.

Essas informações (em especial o itinerário) são essenciais ao

funcionamento do sistema, uma vez que o cálculo de diversos parâmetros

é dependente delas.

18

● Selecionar itinerário: O operador é responsável por selecionar o

itinerário correto que determina o caminho percorrido pelo ônibus

 3.2. Diagrama de Atividades
 Com o objetivo obter um maior aprofundamento das atividades

executadas pela plataforma, utilizou-se o diagrama de atividades para obter uma

descrição detalhada dos casos de uso que ocorrem durante o funcionamento da

plataforma e que são executadas pelo operador.

 3.2.1. Gerenciar operação
 O diagrama de atividades que ilustra o gerenciamento das operações

executadas pela plataforma pode ser observado na Figura 5. O diagrama mostra

que a primeira atividade executada pela plataforma é importar o itinerário do

ônibus e as mensagens informativas aos usuários mostradas no monitor. A

seguir, é feito a leitura das coordenadas obtidas pelo GPS. A partir delas e com

as coordenadas da próxima parada armazenadas, é calculada a velocidade do

ônibus e posteriormente o tempo de viagem estimado. A partir desse ponto, há

uma tomada de decisão que depende do quão próximo está o ônibus em relação

à próxima parada. Assumiu-se que 3 minutos seja um tempo necessário e

suficiente para que as pessoas possam se aproximar da porta, levando em

consideração que o ônibus pode estar cheio, dificultando a locomoção até a

saída. Enquanto o tempo de viagem for maior do que 3 minutos, a plataforma

continua mostrando as próximas paradas no monitor. Caso o tempo de viagem

fique menor do que 3 minutos, a plataforma identifica que o ônibus está se

aproximando da próxima parada e com isso, a próxima parada é enfatizada no

monitor LCD e é emitido um sinal sonoro alertando os usuários da chegada à

parada seguinte.

19

Figura 5 – Diagrama de atividades – Gerenciar operação

 3.2.2. Selecionar itinerário
 O diagrama de atividades que ilustra a seleção do itinerário executado

pelo operador pode ser observado na Figura 6. O diagrama mostra que a

primeira atividade executada pelo operador é inserir o cartão de memória na

plataforma. A seguir, liga-se a plataforma e dentre os possíveis itinerários, é

selecionado um deles. Por fim, é feito uma confirmação da seleção.

20

Figura 6 – Diagrama de atividades – Selecionar itinerário

 3.3. Diagrama de Classes
 O diagrama de classes é essencial na caracterização da estrutura do

software. Esse tipo de diagrama mostra o tipo de relação entre diferentes

classes, além dos atributos presentes e métodos utilizados. Na Figura 7,

encontra-se o diagrama de classes que mostra como está organizado o software,

além das principais funções utilizadas no gerenciamento de operações.

21

Figura 7 – Diagrama de classes – Gerenciamento de operações do sistema

 A seguir, é feita uma descrição detalhada das classes. Observa-se que

há uma relação de composição entre o microcontrolador e as outras classes.

Além disso, o microcontrolador é a classe mais importante desse sistema e é

responsável pelo gerenciamento de todas as outras classes presentes. Todos os

métodos utilizados pelo sistema serão chamados pela classe

‘Microcontrolador’.

3.3.1. Mensagem

 Classe que representa as mensagens de voz utilizadas no sistema.

Possui um atributo ‘mensagem’, que armazena as mensagens na plataforma,

essas mensagens são obtidas pelo método ‘importarMensagem().

3.3.2. Itinerário

 Classe que representa os itinerários utilizados no sistema. Possui um

atributo ‘itinerario’ que armazena o itinerário utilizado na plataforma. Além disso,

possui os seguintes métodos:

● ‘importarItinerario()’: obtém o itinerário que será utilizado e armazena em

‘itinerario’.

22

● ‘obterProximaParada(coordenadas,itinerario)’: utiliza os parâmetros

‘coordenadas’, obtida pelo GPS, e ‘itinerario’, baseado no itinerário

proposto, obtendo-se a próxima parada.

3.3.3. Modulo_GPS

 Classe que representa o módulo de GPS utilizado na aquisição de dados

e coordenadas. Possui 2 atributos: ‘coordenadas’ que representa as

coordenadas de latitude e longitude e ‘horario’ que representa o horário no

instante da aquisição do GPS. Possui os seguintes métodos:

● ‘lerCoordenadas()’: a plataforma realiza a leitura das coordenadas obtidas

pelo módulo GPS.

● ‘lerHorario()’: a plataforma realiza a leitura do horário obtido pelo módulo

GPS.

3.3.4. Monitor_LCD

 Classe que representa o monitor de LCD utilizado para mostrar

informações aos usuários de maneira visual. Não possui atributos. Possui os

seguintes métodos:

● ‘enfatizarParada(proximaParada)’: utiliza o parâmetro ‘proximaParada’ e

com isso a plataforma mostra no monitor de LCD de maneira contundente,

a aproximação da parada seguinte.

● ‘mostrarTempo(tempoEstimado)’: utiliza o parâmetro ‘tempoEstimado’ e

com isso a plataforma mostra no monitor de LCD o tempo de viagem

estimado.

● ‘mostrarProximasParadas(proximaParada,itinerario)’: utiliza os

parâmetros ‘proximasParadas’ e ‘itinerario’, e com isso a plataforma

mostra no monitor de LCD as 4 paradas seguintes.

3.3.5. Alto_falante

 Classe que representa o alto-falante utilizado no anúncio de informações

aos usuários de maneira sonora. Não possui atributos. Possui o método

‘anunciarParada(mensagem, proximaParada)’ que depende dos parâmetros

‘mensagem’ e ‘proximaParada’, e com isso a plataforma anuncia através do alto-

falante a aproximação da parada seguinte.

23

3.3.6. Microcontrolador

 Classe que representa o microcontrolador utilizado no sistema. Possui 2

atributos: ‘tempoEstimado’ que representa o tempo de viagem estimado e

‘velocidade’ que representa a velocidade desenvolvida pelo ônibus. Possui os

seguintes métodos:

● ‘calcularVelocidade(coordenadas,horario)’: utiliza os parâmetros

‘coordenadas’ e ‘horario’ e retorna a velocidade desenvolvida pelo ônibus.

● ‘estimarTempoViagem(velocidade,proximaParada)’: utiliza os parâmetros

‘velocidade’ e ‘proximaParada’ e retorna o tempo de viagem estimado.

 3.4. Diagrama de Sequência
 O diagrama de sequência representa as interações entre os objetos do

sistema projetado e a ordenação temporal dos processos que serão realizados

no programa, de forma lógica e simples.

 No sistema projetado tem-se a centralização dos processos no

Microcontrolador, uma vez que este é o responsável pelo caso de uso ‘Gerenciar

Operação’, conforme mostrado na Figura 8.

 Primeiramente, o programa principal importa o itinerário que será

percorrido por meio da chamada do método ‘importarItinerário()’ da classe

‘Itinerário’. Feito isso, o sistema chama os métodos ‘lerCoordenadas()’ e

‘lerHorário()’ da classe ‘Módulo_GPS’. A partir da sua localização geográfica e

do itinerário obtidos anteriormente, obtém a próxima parada chamando o método

‘obterProximaParada(coordenadas,itinerario)’. Com os parâmetros obtidos, são

chamados os métodos ‘calcularVelocidade(coordenadas,horario)’ e

‘estimarTempoViagem(velocidade, proximaParada)’ da classe

‘Microcontrolador’, a fim de calcular a velocidade instantânea do ônibus e o

tempo estimado até a próxima parada.

 Terminadas todas essas operações, se o tempo estimado for superior a 3

minutos, o sistema mostra os resultados obtidos visualmente (Figura 9) por meio

chamada dos métodos ‘mostrarTempo(tempoEstimado)’ e

‘mostrarPróximasParadas(proximaParada,itinerario)’ da classe ‘Monitor_LCD’.

Caso contrário (tempo estimado inferior a 3 minutos), importa a mensagem

sonora relacionada a próxima parada e faz o seu anúncio por meio do alto-falante

chamando os métodos ‘importarMensagem()’ da classe ‘Mensagem’ e

‘anunciarParada(mensagem, proximaParada)’ da classe ‘Alto-falante’, além de

enfatizar de forma visual a próxima parada chamando o método ‘enfatizarParada

(proximaParada, itinerario)’, conforme visto na Figura 10.

24

Figura 8 – Diagrama de sequência - Gerenciar Operação

Figura 9 – Diagrama de sequência para tempo > 3 min.

25

Figura 10 – Diagrama de sequência para tempo < 3 min.

26

4. Teste do Sistema de Aquisição de Dados via GPS

Para realizar o teste do sistema de aquisição de dados via GPS, utilizou-

se o Arduino e o módulo GPS da Adafruit. Esse sistema proporcionará maior

praticidade durante o teste, já que o Arduino envia as informações diretamente

à tela do notebook, além deste já estar alimentando o Arduino. Com isso, o teste

do sistema pode ser feito em movimento, dentro de um carro ou no próprio

ônibus.
Entretanto, o objetivo desse projeto é desenvolver um sistema embarcado

que possa ser instalado dentro de um ônibus. O Arduino não fornece essa

possibilidade pois necessita do acompanhamento de um computador. Para a

implementação final do projeto, será utilizado o Raspberry Pi que possui

características que atendem essa finalidade.

4.1. Instalação do Módulo GPS no Arduino
 A instalação do módulo GPS no Arduino é relativamente simples. O

módulo possui 9 pinos, mas foram utilizados apenas 4. Os pinos utilizados são

VIN, GND, RX e TX. O pino VIN corresponde à alimentação de 3 a 5 V. O pino

GND é o sinal de terra do módulo. O pino TX transmite os dados do módulo GPS

ao microcontrolador e funciona ao nível lógico 3,3 V. O pino RX é responsável

por enviar dados ao GPS e funciona tanto a 3,3 V quanto a 5 V. Os pinos TX e

RX funcionam a uma taxa de baud padrão de 9600 Os pinos VIN e GND serão

conectados ao 5 V e ao terra (GND) do Arduino respectivamente. Os pinos RX

e TX foram conectados a dois pinos de entrada digital do Arduino (ADAFRUIT,

2012). A conexão dos pinos pode ser observada na Figura 11.

Figura 11 – Esquemático das conexões com o módulo GPS (ROBOTIC-CONTROLS,

2013)

27

 Com o intuito de aumentar a captação do sinal de GPS, foi utilizada uma

antena externa que pode ser conectada ao módulo GPS. Essa antena

proporciona um ganho maior ao sistema, mas também necessita de uma

quantidade maior de corrente. Além disso, ela possui um imã em seu interior,

facilitando a fixação em superfícies metálicas (ADAFRUIT, 2012). A montagem

desse sistema pode ser observada na Figura 12.

Figura 12 – Montagem do sistema composto pelo módulo GPS, antena externa e

Arduino

4.2. Teste do Sistema de Aquisição via GPS
Para realizar o teste de aquisição de dados do GPS é necessário baixar a

biblioteca Adafruit GPS. Essa biblioteca já possui exemplos de sketch para o

Arduino e neles já são mostradas as coordenadas do GPS. Os valores são

mostrados no monitor serial do software do Arduino e taxa de baud utilizada

precisa ser 115200 (ADAFRUIT, 2012). Um exemplo de teste e os valores da

aquisição de dados pode ser observado no Figura 13.

28

 Figura 13 – Monitor serial com a aquisição de dados via GPS

Pela análise desta figura percebe-se que diversos parâmetros são gerados:

o horário e a data em que foi feita a aquisição, as coordenadas de latitude e

longitude, a velocidade, o ângulo formado pelo módulo, a altitude e o número de

satélites.

29

5. Implementação do Sistema

 Para implementar o sistema, utilizou-se o ambiente de desenvolvimento

Microsoft Visual Studio 2015, principal ferramenta que auxilia no

desenvolvimento de aplicações baseadas em Windows IoT. Neste capítulo será

descrito alguns aspectos gerais do sistema e o processo utilizado para

implementá-lo.

 5.1. Aspectos Gerais

 Internet of Things é uma conceito na qual os dispositivos e processos

estão se tornando a cada dia mais inteligentes e dinâmicos. O formato de sua

arquitetura atende os requisitos e tecnologias solicitados pelos desenvolvedores

e os possibilita solucionar problemas reais. Até o ano de 2020, 25 bilhões de

dispositivos estarão conectados à internet, facilitando a utilização de dados e

tomadas de decisões de maneira autônoma. A arquitetura IoT possui um escopo

diversificado e pode contemplar tanto dispositivos físicos quanto virtuais,

sensores, atuadores e diferentes protocolos (Figura 14) (RAY, 2016).

Figura 14 – Dispositivos e protocolos que funcionam via IoT (RAY, 2016).

 Nesse projeto, essa funcionalidade é implementada utilizando o Windows

IoT, uma versão de Windows 10 otimizado para plataformas menores como o

Raspberry Pi. Essa ferramenta utiliza a Plataforma Universal Windows (UWP),

facilitando o desenvolvimento de aplicações que possibilitam integrar interface

com o usuário, pesquisa, armazenamento online e serviços baseado em nuvem

(MICROSOFT, 2016).

30

 5.2. Configuração e Implementação da plataforma

Antes de iniciar a implementação do sistema, é necessário realizar a

instalação e configuração baseado no hardware (Raspberry Pi), na mídia (cartão

MicroSD) e no sistema operacional utilizado (Windows IoT Core). Para facilitar a

configuração do dispositivo, pode-se usar o painel do Windows IoT Core (Figura

15). Durante a configuração, o sistema operacional foi instalado no cartão

MicroSD e o dispositivo utilizado recebe um nome e uma senha de acesso. O

ambiente de desenvolvimento utilizado foi o Visual Studio 2015 que proporcionou

templates, editor de código, debugador e diversas outras ferramentas que

auxiliaram no desenvolvimento do projeto (MICROSOFT, 2016).

Figura 15 - Painel do Windows IoT Core

 5.2.1. Montagem do Sistema

 Para o sistema, foram utilizados um Raspberry Pi 2, um monitor LCD, um

módulo GPS da Adafruit e uma caixa de som, e todos esses dispositivos foram

integrados através de uma arquitetura IoT. A programação do software foi

realizado em um notebook e transmitida ao Raspberry Pi via internet, sendo

assim, é essencial que tanto o notebook quanto o Raspberry Pi estejam

conectados à rede durante a implementação.

 O monitor LCD foi conectado ao Raspberry Pi via HDMI ou VGA e é o

dispositivo no qual serão mostradas as informações aos usuários do ônibus. Nele

será projetado a interface gráfica na qual é possível acompanhar as próximas

paradas, o tempo estimado de viagem e a velocidade do ônibus.

31

 O Raspberry Pi 2 é o controlador do sistema e é responsável por enviar o

conteúdo da interface ao monitor LCD, processar os dados do GPS e executar

as rotinas presentes no software.

 O módulo GPS é responsável por coletar diversos dados (latitude,

longitude, velocidade, tempo e horário de aquisição) conforme mostrado na

seção 4.3.

 A caixa de som é responsável pelo anúncio das paradas de forma sonora.

A idéia inicial era utilizar a própria saída HDMI para realizar essa tarefa,

entretanto, verificou-se que essa funcionalidade não está disponível para ser

implementada no Raspberry Pi 2 via Windows Iot (MICROSOFT, 2016). Sendo

assim, foi utilizada a saída analógica de áudio de 3,5 mm.

 O sistema implementado está representado na Figura 16. Observa-se que

o notebook não está presente na imagem mas está conectado via wi-fi e o

Raspberry Pi está conectado através de um cabo de rede. Não há nenhuma

conexão física entre os dois dispositivos, o elo é estabelecido apenas pela

arquitetura IoT. Vale ressaltar que uma vez que o software esteja carregado no

Raspberry Pi, não é mais necessária a utilização do notebook.

Figura 16 – Sistema implementado

32

 5.2.2. Implementação da Interface Gráfica

 A interface gráfica foi implementada utilizando o ambiente de

desenvolvimento Visual Studio 2015 (Figura 17) que oferece diversas

ferramentas que auxiliam no design. Uma delas permite ao desenvolvedor

arrastar os componentes desejados e posicioná-las com o layout desejado.

Figura 17 – Desenvolvimento da interface gráfica no Visual Studio 2015

 Foram desenvolvidas 2 interfaces gráficas: uma para o operador do

sistema e outra para o usuário (Figuras 18 e 19 respectivamente).

 Na interface gráfica do operador, é possível escolher, dentre as linhas de

ônibus disponíveis, qual será utilizada. Após a escolha do itinerário, o operador

consegue iniciar a operação do sistema e com isso, a aquisição de dados via

GPS começa de maneira simultânea. Esses dados serão utilizados para

determinar a localização do ônibus e estimar o de viagem até a próxima parada.

Há também a possibilidade de encerrar a operação em caso de necessidade.

 A interface gráfica do usuário contém as informações úteis à viagem (linha

de ônibus utilizada, próxima parada, tempo de viagem estimado e velocidade).

Essas informações são calculadas pelo software implementado e são mostradas

ao usuário no monitor LCD em tempo real.

33

Figura 18 – Interface gráfica do operador

Figura 19 – Interface gráfica do usuário

34

 5.2.3. Implementação do Algoritmo de Cálculo das Próximas Paradas e

Tempo Estimado

 Antes de iniciar a implementação do algoritmo, é necessário obter as

paradas percorridas pelo ônibus e suas respectivas coordenadas de latitude e

longitude. Os nomes de cada parada são mostradas no monitor LCD e as

coordenadas são essenciais na localização e nos cálculos.

As coordenadas presentes nos pontos de ônibus foram obtidas via Google

Maps. Para esse projeto, decidiu-se testar o itinerário do ônibus da Sptrans da

Linha 8022-10. Esse ônibus parte do metrô Butantã, circula pela Cidade

Universitária e retorna ao mesmo ponto de início (Figura 20). As coordenadas de

latitude, longitude e a elevação em relação ao nível do mar podem ser

observadas na Tabela 3.

Figura 20 – Itinerário do ônibus da Sptrans da Linha 8022-10 (IME-USP)

35

Tabela 3 – Tabela que relaciona o ponto de ônibus com a respectiva latitude, longitude e

elevação (MAPCOORDINATES e SPTRANS)

 O anúncio das informações aos usuários é feito de acordo com a interface

gráfica desenvolvida e explicada na seção 5.2.2. As informações disponíveis na

tela são: 'Linha', 'Próxima Parada', 'Tempo Estimado' e 'Velocidade'. A

maneira como essas informações são obtidas é explicado a seguir.

36

 Para a 'Linha', a informação é obtida a partir da escolha do operador que

seleciona a linha de ônibus desejada na interface gráfica mostrada pela Figura

18. Por enquanto, foi utilizado apenas a Linha 8022-10: Cidade Universitária -

Metrô Butantã. Após testes bem sucedidos é possível implementar o sistema em

outras linhas.

 A sequência de paradas já está definida, como mostra a Tabela 3. Sendo

assim, para realizar a troca de paradas na interface gráfica basta determinar, a

partir das coordenadas obtidas pelo módulo GPS em tempo real, se o ônibus

chegou na próxima parada. Para tornar isso possível, decidiu-se

estabelecer uma região que cercará o ponto referente à parada e, caso as

coordenadas obtidas estejam dentro dessa região, significará que o ônibus

chegou ao destino. Consequentemente, a informação 'Próxima Parada' será

atualizada.

 Um ônibus padrão da Sptrans possui em torno de 12 metros (SPTRANS,

2007). Considerando que os ônibus nem sempre param exatamente no ponto,

decidiu-se estabelecer uma região de segurança com um raio de 15 metros com

o centro localizado no ponto de ônibus.

 A velocidade instantânea pode ser obtida diretamente da aquisição feita

pelo módulo GPS e ela é mostrada na lacuna correspondente à 'Velocidade'.

 Para o 'Tempo Estimado', foi desconsiderada a influência do trânsito no

cálculo, já que esse parâmetro possui características imprevisíveis e tornaria a

complexidade do cálculo muito maior. Com isso, o tempo estimado seria dado

por:

𝑇𝑒𝑚𝑝𝑜⁡𝐸𝑠𝑡𝑖𝑚𝑎𝑑𝑜⁡ = ⁡
𝐷𝑖𝑠𝑡â𝑛𝑐𝑖𝑎⁡𝑒𝑛𝑡𝑟𝑒⁡𝑜𝑠⁡𝑝𝑜𝑛𝑡𝑜𝑠

𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒⁡𝑚é𝑑𝑖𝑎⁡𝑛𝑜⁡𝑡𝑟𝑒𝑐ℎ𝑜

A distância entre os pontos de ônibus pode ser obtida via Google Maps e

a velocidade média no trecho seria obtida a partir de uma média aritmética das

velocidades instantâneas ao longo do trecho percorrido.

37

6. Conclusões

 O sistema de transporte público por meio do ônibus é certamente

necessário para uma cidade grande como São Paulo. Apesar de oferecer um

serviço satisfatório aos seus usuários, a falta de informações e a dificuldade em

se determinar qual a próxima parada ainda é um problema que poderia ser

solucionado. A presença de soluções para este problema já está presente em

diversos países e sem dúvida, são alternativas que seriam bem aceitas pelos

usuários no Brasil.

 Baseado nesse fato, o trabalho visou o projeto e implementação de um

sistema responsável por anunciar aos usuários do ônibus as próximas paradas

e o tempo de viagem estimado. Para tanto, utilizou-se uma associação de

hardware e software baseado na arquitetura Internet of Things com a finalidade

de coletar dados via GPS, realizar cálculos da distância e da velocidade, estimar

o tempo de viagem e realizar o anúncio aos usuários de maneira visual e sonora.

O projeto do sistema foi feito a partir de diagramas UML que possibilitaram

determinar a interação do sistema com o usuário, a sequência de eventos e a

estrutura do software. O processo de obtenção da próxima parada e estimativa

do tempo de viagem foi simplificado devido à complexidade em realizar esses

cálculos em tempo real.

Para que o projeto seja implementado de fato em um ônibus, seria

necessário proteger o hardware contra impactos e alimentar um monitor LCD em

corrente contínua. Esses foram os principais pontos que dificultaram o teste do

sistema em movimento. O projeto foi uma prova de conceito com o intuito de

mostrar que é possível implementar um sistema que realize o anúncio das

próximas paradas de um ônibus de modo automático a partir da localização

geográfica via GPS. A partir dos resultados obtidos e descritos neste relatório,

conclui-se que o projeto é viável e certamente facilitaria a vida dos usuários de

ônibus presentes nas grandes cidade.

38

7. Referências Bibliográficas
ADAFRUIT. Adafruit Ultimate GPS | Adafruit Learning System. Adafruit. Disponivel em:

<https://learn.adafruit.com/adafruit-ultimate-gps>.

ARDUINO. Intel Galileo. Arduino, 2014. Disponivel em:

<http://www.arduino.cc/en/ArduinoCertified/IntelGalileo>. Acesso em: 20 Abril 2015.

BADAMASI, Y. A. The Working Principle of an Arduino. Nigerian Turkish Nile University. Abuja,

p. 1-4. 2014.

CALVIS, A. GPS Shield Hookup Guide. Sparkfun, 2015. Disponivel em:

<https://learn.sparkfun.com/tutorials/gps-shield-hookup-guide>. Acesso em: 14 Abril 2015.

DZIEKAN, K.; LOTTENHOFF, K. Dynamic at-stop real-time information displays for public

transport: Effects on customers. Transportation Research Part A: Policy and Practice, 21

Novembro 2006. 489-501.

FILIPEFLOP. QUAL ARDUINO COMPRAR? CONHEÇA OS TIPOS DE ARDUINO. Blog FILIPEFLOP,

2014. Disponivel em: <http://blog.filipeflop.com/arduino/tipos-de-arduino-qual-

comprar.html>. Acesso em: 20 Abril 2015.

IME-USP. SPtrans 8012 e 8022. IME-USP. Disponivel em:

<https://www.ime.usp.br/images/arquivos/imagens/itinerarios.pdf>.

LABORATÓRIO DE GARAGEM. Tutorial: Controlando o MP3 Player Shield por comandos via

Serial. Laboratório de Garagem, 2013. Disponivel em:

<http://labdegaragem.com/profiles/blogs/tutorial-utilizando-o-mp3-player-shield>. Acesso

em: 18 Abril 2015.

MEZA, A. J.; LIZÁRRAGA, J. A.; LA FUENTE, E. Framework for Estimating Travel Time, Distance,

Speed and Street Segment Level of Service. Procedia Technology, p. 61-67, Julho 2013.

MICROSOFT. WIndows IoT. Microsoft Developer Resources, 2016. Disponivel em:

<https://developer.microsoft.com/pt-br/windows/iot>. Acesso em: 22 Setembro 2016.

MICROSOFT. Windows compatible hardware development boards. Hardware Dev Center,

2016. Disponivel em:

<https://msdn.microsoft.com/library/windows/hardware/dn914597(v=vs.85).aspx>. Acesso

em: 15 Novembro 2016.

MICROVGA. MicroVGA Arduino support. MicroVGA, 2012. Disponivel em:

<http://microvga.com/arduino>. Acesso em: 19 Abril 2015.

ORSINI, L. Arduino Vs. Raspberry Pi: Which Is The Right DIY Platform For You? Readwrite, 2014.

Disponivel em: <http://readwrite.com/2014/05/07/arduino-vs-raspberry-pi-projects-diy-

platform>. Acesso em: 12 Abril 2015.

39

POLITIS, I. et al. Evaluation of a bus passenger information system from the users’ point of

view in the city of Thessaloniki, Greece. Research in Transportation Economics, 2010. 249-255.

RAY, P.P. A Survey on Internet of Things Architectures. Journal of King Saud University -

Computer and Information Sciences, 3 Outubro 2016.

RICHARDSON, M.; WALLACE, S. Primeiros Passos com o Raspberry Pi. In: RICHARDSON, M.;

WALLACE, S. Primeiros Passos com o Raspberry Pi. 1ª Edição. ed. São Paulo: Novatec Editora

Ltda., 2013. Cap. 1, p. 18-21.

ROBOTIC-CONTROLS. Adafruit Ultimate GPS Breakout | Robotic-Controls. ROBOTIC-

CONTROLS, 26 nov. 2013. Disponivel em: <http://robotic-controls.com/learn/sensors/adafruit-

ultimate-gps-breakout>.

SECRETARIA EXECUTIVA DE COMUNICAÇÃO. Prefeitura testa ônibus com internet wi-fi, TV e

aviso sonoro de paradas. Prefeitura de São Paulo, 2013. Disponivel em:

<http://www.capital.sp.gov.br/portal/noticia/273#>. Acesso em: 19 Abril 2015.

SECRETARIA MUNICIPAL DE TRANSPORTES. Passageiros Transportados - 2015. Prefeitura de

São Paulo, 2015. Disponivel em:

<http://www.prefeitura.sp.gov.br/cidade/secretarias/transportes/institucional/sptrans/acesso

_a_informacao/index.php?p=188767>. Acesso em: 14 Abril 2015.

SOUSA, D. Arduino ou Raspberry Pi? Saiba qual micro PC é melhor para seu projeto. Techtudo,

2015. Disponivel em: <http://www.techtudo.com.br/noticias/noticia/2015/04/arduino-ou-

raspberry-pi-saiba-qual-micro-pc-e-melhor-para-seu-projeto.html>. Acesso em: 12 Abril 2015.

SPTRANS. Manual dos Padrões Técnicos de Veículos. Secretaria de Transportes da Prefeitura

de São Paulo, Junho 2007.

TOWNSEND, K. Adafruit Ultimate GPS on the Raspberry Pi. Adafruit, 2013. Disponivel em:

<https://learn.adafruit.com/adafruit-ultimate-gps-on-the-raspberry-pi/setting-everything-up>.

Acesso em: 14 Abril 2015.

VALLE, C. D. Sistema de ônibus em SP transportou 6 mi a mais em 2013. Estadão, 2014.

Disponivel em: <http://sao-paulo.estadao.com.br/noticias/geral,sistema-de-onibus-de-sp-

transportou-6-mi-a-mais-em-2013-imp-,1119375>. Acesso em: 14 Abril 2015.

VELEDAF, T. Armazenamento de dados em cartão SD com Arduíno. Repositório da

Automação, 2014. Disponivel em:

<https://automacaoifrsrg.wordpress.com/2014/05/02/armazenamento-de-dados-em-cartao-

sd-com-arduino/>. Acesso em: 19 Abril 2015.

WIECHERT, M. D. Tutorial: Usando a EEPROM do Arduino para armazenar dados de forma

permanente. Laboratório de Garagem, 2012. Disponivel em:

<http://labdegaragem.com/profiles/blogs/tutorial-usando-a-eeprom-do-arduino-para-

armazenar-dados-de-forma>. Acesso em: 19 Abril 2015.

40

